Today's Goals:

- 1. Review lab OS11: current
- 2. CPU Scheduling: start theory

Current Status of Lab

8 Processes context-switched using round-robin scheduling:

- Kernel interrupt service routine context switching
- Shell process to allow user commands (P7 or P0)
- Power-failure monitor (P6 or P1)
- Reset pushbutton monitor (P5 or P2)

For the A/DC, you must use polling. There are no interrupts that occur when CCF goes high.

CPU Scheduling

Characteristics of Processes

	CPU Burst	I/O Burst	CPU Burst	I/O Burst	
_					

The length of the bursts determines the bound status. Majority of time on the CPU: CPU-bound Majority of time on in I/O: I/O-bound

Frequency of CPU Burst Duration

Statistically, most processes have a 2-3 ms burst time.

Multiprogramming

The goal of multiprogramming is to keep CPU usage between 50-100%, as it is the most expensive resource and we want to utilize it as much as possible.

Degree of Multiprogramming

Number of processes in memory and executing.