CS-384 – Op Sys January 19, 2006

List the four cases (conditions) causing scheduling

- 1. Process moves from running → waiting
- 2. Process moves from running \rightarrow ready (interrupt)
- 3. Process moves from waiting \rightarrow ready
 - a. Completion of child
 - b. Receipt of signal
- 4. Process terminates

Non-preemptive OS

Schedules only conditions 1 and 4.

The element of cooperation had to be included by developers of software for these systems. Application programmers would use a system call to release the CPU so that others could use it. To be a certified product, had to play that game.

Examples: Windows 3.x, Mac OS through OS9

Preemptive OS

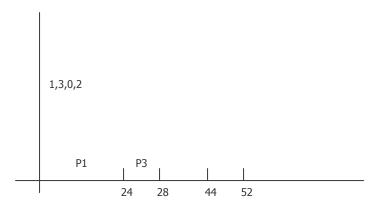
Schedules for conditions 1 through 4.

Preemption is initiated by device and timer interrupts (2 and 3)

Examples: All of the modern OSes (Windows 95 and onward, Mac OS X, Unix, etc.)

OS Scheduler	OS Dispatcher
Select process order	Context switcher
Doesn't have to be fast – could run once a minute.	Must be <u>fast</u> (Dispatch latency must be minimal – no more than 5% of the time slice)

In many OSes, the scheduler and dispatcher are one in the same


Scheduling Algorithms

First Come, First Served (FCFS) Scheduling

- Non-preemptive
- Uses a FIFO queue for the ready queue
 - o Dispatcher simply removes what is at the head of the queue

Prc 0 1 2	CPU Bur 16 24 8
2 3	8 4

CS-384 – Op Sys January 19, 2006

