
���������	
��
������������� �����
�����������

�

�

������ ����!� "#��������$��$�����%!��$&#��'���#(���

Preemption with Multilevel Queues

Arrival Preemption
Higher priority process arrives in a higher priority queue. The context switch is done
immediately. Ex: I/O wait of a system process completes.

Time slice expiration
Used to move processes on and off of the CPU of the OS.
Weighted by priority

 70% system
 10% interactive
 10% network
 5% editing
 5% batch

Multilevel-feedback queue scheduling
The ready queue is still segmented into multiple queues. Instead, they are simply ready queues of
different priority. What makes them different is how processes move through them.

This is the most complex scheduling algorithm for a single-processor architecture, but it
statistically gives the best performance.

A short job completing does not delay a long job as long as a long job completing delays a short
job.

Processes migrate on CPU burst time (exponential average)

)��#�����
�
�����

����

�)*�+������
�
���	
����
�
�

������������

� ��

���������	
��
������������� �����
�����������

�

�

������ ����!� "#��������$��$�����%!��$&#��'���#(���

Issues
1. How many queues?

a. Just by increasing the number of queues, you increase the complexity of your
exponential process migration technique

2. How do you age?
3. How is demotion done?

a. Exponential average, number of I/O waits, etc.
4. How is promotion done?
5. Where does a new process go?

a. If using exponential average, throw in the high priority queue and measure its
time.

Duo-core Processor (1 chip)

�
�
�
�
�
�
����

�
�
�
�
�
�
����

�
��������	��

���������	
��
������������� �����
�����������

�

�

������ ����!� "#��������$��$�����%!��$&#��'���#(���

Quad-Processor System (4 chips)

Multiprocessor (MP) Systems

1. Asymmetric multiprocessor system (AMP)
a. Central CPU runs the OS and schedules processes onto other CPUs

2. Symmetric multiprocessor system (SMP)
a. All processors are self-scheduling – they have their own ready queues
b. Adopted as the standard by the industry
c. Support provided in Windows XP, Linux, Mac OS

Homogeneous MP System
 All processors are identical.
 Industry standard

Heterogeneous MP System
Scheduling behavior is much more difficult because the processors do not have the same
capabilities.

Cache
Principle of data locality
Programmers tend to make variables, use the intensely, and then throw them out. The cache
stores these variables that are in use. The cache memory saves the loss in performance that
occurs when accessing main memory.

This problem is called Cache Coherency. The automatic flush and load process is essential, as
data will be lost without it.

�
����

�
����

�
����

�
����

�
����

�
����

�
����

�
����

 #�����#
�&�

���������	
��
������������� �����
�����������

�

�

������ ����!� "#��������$��$�����%!��$&#��'���#(���

Processor affinity
If we don’t invalidate the processor’s cache on a context switch, the processor has lost its
variables and we have dangling variables that are in the wrong cache.

Processors have an affinity (like, preference) of a specific processor. They want to stay on their
initial processor to avid cache-miss. We either guarantee that the process goes on that initial
processor or we must invalidate the cache.

Processes may request processor affinity by using a system call.

Two ways to guarantee that you get put back on the same processor:

1. Soft Affinity = no guarantee
OS does not guarantee it, but will try really, really hard to not migrate the process.

The goal is to balance the load of the processes between the available processors. The
load balancing problem is more important than affinity, so that will often take priority.

2. Hard Affinity = no migration
OS guarantees that the process will not migrate to another processor. It does not
necessarily have to flush and reload the cache. This provides better potential for
performance because the flush and reloading of the cache is avoided.

Lab Notes
Context, scheduler, power, reset

Instead of:
LDAA PACTL
ANDA #%11111101
ORAA #%00000001
STAA PACTL

Try:
LDX #PACTL
BCLR 0,x #%00000010
BSET 0,x #%00000001

