
���������	
��������������� ����������������

�

�

����������� � !"��������#��#�����$ ��#%"��&�'�"(���

Load Balancing

Both processors are kept running
Statistical analysis will be used to determine which ready queue processes should go into.

Remember the goal: the processor is the most expensive part of the computer. You want to keep
it (them) busy, otherwise you have a poor cost/performance ratio.

There are two methods of achieving this:

Common-ready queue

If a processor becomes idle, its dispatcher simply gets a process from the ready queue and
the ready queue shrinks.

The responsibility of load balancing becomes something that is not managed by the OS,
but a processor simply keeps itself busy.

Private (separate) ready queues

If a processor becomes idle, the operating system has to pull a process from a ready
queue and place it on the CPU.

The worst case: dispatcher finds no processes in the ready queue. In this case, a process
must be taken from another processor’s ready queue.

Techniques used to move processes from one queue to another in a private ready queue system.

Push Migration
OS process periodically checks the queues and balances them

Pull Migration
The idle processor dispatcher pulls a process from another ready queue.

Hyperthreading
Symmetric multithreading

Multithread processors that look the same to us – have the same resources, etc.

Implemented in the Intel Pentium 4 with HT technology

Push / Pull –

On Exam!

���������	
��������������� ����������������

�

�

����������� � !"��������#��#�����$ ��#%"��&���"(���

Take a scalar calculation path and split it into several calculation paths, thus making the process
superscalar.

Multiple machine state registers

Windows XP Scheduling
Preemptive
 Arrival of a higher priority process to a ready queue
 Time slice expiration
 Process termination
 Process blocks for I/O, child, or signal

32 levels of priority (lowest: 0 to highest: 31)

 Variable priority: 1-15
 Real-time priority: 16-31

Real time processes – must be given the CPU within a given length of time for the system to
remain stable.

There is one queue per priority, for a total of 32 queues. The dispatcher looks at every queue,
starting at 31, and runs the first it finds.

Priority classing: real time, high, above normal, normal, below normal, idle
Relative classes: time critical, highest, above normal, below normal, lowest, idle

Real-time priorities are static

With variable priority processes, priority is decreased if process execution time takes longer than
expected.

����������

�	
��
	�����	���

�	
��
	�����	���

�	
��
	�����	���

�

�

�

�

���	����

�	
��
	�����	��� �

�

�

�

��������

�

�

��

��

��

��

��

��

�

