
���������	
��������������� �����������������

�

�

���� �!����"� #$��������%��%�����&"���%'$��(���$)���

Memory Paging

Paging and segmentation are implemented in all modern operating systems.

Definition
Memory allocation scheme that allocates multiple non-contiguous ranges of memory per process

Base1 + limit1; base2 + limit2; etc.

Basic Theory

• Hardware for speed
• Address translation by MMU
• Translation page table
• CPU addresses are logical
• MMU addresses are physical

Memory is organized into a series of frames known as pages. The translation page table is the
key. The MMU maintains this internally. The CPU, then, generates a logical address for its
access to memory. Rather than stating memory location 8000, it says “I want to access memory
location 4 away from my base.” The MMU then translates this to an actual physical address in
memory.

Organize memory like pages in a book. Allocate memory randomly. If the process needs 24
pages, allocate 24 random pages. Maintain a table so that the translation can be done.

On the average, when we have internal fragmentation, it is ½ page, 50%.

Logical Addresses

The majority of compilers already create a logical address structure. To the program, its memory
begins at 0.

Physical Address

In the example of the HC11, consider the first byte to be the frame.

Frame

f

Byte Offset

d

Page Number

p

Byte Offset

d

���������	
��������������� �����������������

�

�

���� �!����"� #$��������%��%�����&"���%'$��(���$)���

Frame size and page size are equal. Regularity implies a simpler circuit and therefore smaller.
Smaller implies cheaper and faster.

In general, algebraically, we can begin to discuss sizes of things in memory. If you have an m-bit
memory address, you will also have an m-bit logical address, because the memory space is the
same.

2 bytes of memory

2 frame size

m

n

Rule of thumb: an 8kb frame is a pretty good frame size and will help to limit internal
fragmentation. The Intel Pentium supports 8 kb or 4 kb frames. It is a complete dichotomy.

32
19

13

2 total bytes
2 2 frames

2 bytes per frame
m n−= =

 bits longp f m n= = −

These virtual pages are mapped to physical memory addresses.

Fragmentation Comments
There is no external fragmentation. External fragmentation occurs when there is not a contiguous
region of memory large enough to hold the process.

However, there is internal fragmentation that is, on the average, of the size
1
2

f . The worst case

internal fragmentation occurs when only one byte of a frame is used.

�

��������

�

��������

�

������	�

�����

�

�����

�	���

�����

���������	
��������������� �����������������

�

�

���� �!����"� #$��������%��%�����&"���%'$��(���$)���

To decrease internal fragmentation, you decrease the frame size. However, in this instance, the
number of frames goes up. Therefore, the table sizes grow.

Large # frames � slower lookup
Small # frames � very fast lookup, but higher internal fragmentation

Modern systems traditionally support 8 kb as a frame size. Frame sizes from 512 kb to 1 mb are
found on some architectures.

Loading
Determine process size. Calculate number of pages required. Then, go through the frame table
which frames are available and determine which frames are available an

In general, the page table information is stored in a backing storage device and is accessed by the
OS at a context switch.

The MMU is a device controlled by the operating system.

Current MMU page table must be saved to backing storage device.
New page table is loaded to the MMU.

Page Table Options (in MMU)

1. Privileged-access registers (for small number of pages)
a. Extremely fast. Privileged-access so that a user process could not modify them

2. Memory or backing storage device
a. MMU would need some sort of pointer register to the base of the process page

table.
b. If you have to dereference a pointer to get information, that’s a first memory

access. You then go out to memory to get the info off the page you wanted. You
now have two memory accesses, and that is a penalty.

c. Access delay is no longer acceptable
3. Translation look-aside buffer (TLB)

Translation look-aside buffer (TLB)
Very fast cache memory implemented as part of the MMU. This is an associative cache memory.
It is presented with a key, which is hashed very rapidly to the result.

It is worth the effort and expense it costs to create the associative cache because of the speed
advantage it gives.

Performance
Hit ratio, H, is the key
% of time that we actually access this TLB and find our page/frame pair. The goal is to make the
ratio high.

���������	
��������������� �����������������

�

�

���� �!����"� #$��������%��%�����&"���%'$��(���$)���

 2(1)access accesseffective time H t H t= ⋅ + − ⋅

Miss
When there are misses (page/frame pair not found in cache), we have to load the cache from the
memory.

Replacement strategy.

Results in two memory accesses. Do a look up, realize it’s not there, re-load cache from memory,
do another lookup.

Hit ratios of 75-80% are typical.

Principle of data locality – people declare variables and access them in loops, near where they
were declared. Then, they’re thrown away.

If you’ve accessed _this_ location in memory, you will probably access one nearby in successive
lookups.

MMU Protection Bits
There are two types of protection bits:

• Memory protection bits
o Allow the process page table to be read, written, read/write, or executed
o The compiler and the loader are responsible for setting page bits appropriately

• Valid-invalid bits

