MSOE - SE-3811 - FORMAL METHODS, DR. WELCH, SPRING 2006

The 1992 London Ambulance Service Computer
Aided Dispatch System Failure

Erich Musick

Abstract— This paper goes beyond a simple glance at the
immediate results of the 1992 failure of the London Ambulance
Service’s computer aided dispatch system and explores the
sequence of events leading up to the incident in attempt to
determine professional responsibility and how the project might
have benefited from a more formal specification of the software
system.

I. INTRODUCTION

HILE failures in software are perhaps one of the more

quickly excused types of defects (after all, it is surely
much easier to forget to free memory than it is to miscalculate
the amount of weight a bridge can hold), they are not immune
to causing immense amount of damage. The integration of
software into millions of modern electromechanical devices,
combined with the fallibility of its developers allows room for
a wide margin of error.

The London Ambulance Service’s (LAS) 1992 computer
aided dispatch (CAD) software system failure is one instance
of the considerable negative effect that a small error in
software can have on a large population of people. A careful
examination of the events surrounding the incident, however,
suggests that there was more to the issue than just an error in
the software. Rather, the overall carelessness with which the
application’s development was approached from its conception
set the stage for such a grand failure.

II. THE LONDON AMBULANCE SERVICE
A. Overview

In 1992, the LAS provided ambulance service to 6.8 million
people living in a 600 square mile area. Of its 318 emergency
ambulances, an average of 212 were in service at any given
time, in addition to 445 transport ambulances, one helicopter,
and a motorcycle response unit. A total of 70 ambulance
stations which employed 2746 staff members housed these ve-
hicles. The entire system was managed from a central location
at the LAS Headquarters in Waterloo. On average, between
2000 and 2500 calls were received daily, 60% of which were
requests for emergency services. The LAS devoted 55% of its
staff and 76% of its budget specifically to emergency response
[2]. According to Wikipedia, the LAS remains the “largest
ambulance service in the world that does not directly charge
its patients for its services” [4].

B. Existing System

In the mid-1980s, the LAS emergency dispatch system was
run completely manually and consisted of three main tasks:

1) Call Taking : When a call requesting emergency am-
bulance service was received, the call taker filled out a paper
form, found the caller’s location on a map, and then put the
form on a conveyor belt [2].

2) Resource Identification : The conveyor belt took the
forms to another LAS employee who analyzed the locations
and statuses of ambulances in the call’s region. He then
assigned the call to an available unit and wrote the assignment
on the form [2].

3) Resource Mobilization : Finally, a dispatcher made
contact with the ambulance to which the call was assigned
and provided the operator(s) with the details of the call [2].

Looking back on this system from the perspective of 2006,
in which computers dominate everyday life, a manual system
that relies on people’s memories, paper, and human reasoning
for optimal resource utilization seems silly. Indeed, even at the
time, some of these inefficiencies were acknowledged and a
new, computer-based system was proposed [2].

C. Proposed System

The government-imposed stipulation that calls be responded
to within three minutes, in addition to the obvious deficiencies
of the manual dispatch system led those in charge of the
LAS seek out a computer-based alternative [2]. The proposed
system’s highlights consisted of an automatic vehicle locating
system (AVLS) and mobile data terminals (MDTs) that would
be placed inside emergency vehicles and would facilitate
communication using a computer terminal [1].

The LAS looked at adopting an existing system but found
problems with each of the available options. LAS manage-
ment decided to create a new one and proceeded to gather
requirements without receiving input from ambulance crews
or dispatchers [2].

Management set big goals. Rather than simply assisting
dispatchers, this completely computerized system would do
nearly everything automatically. The simple sequence of steps
performed by a person would be to answer the phone, enter
incident data into a computer terminal, and then respond if
the system displayed exception messages resulting from no
ambulances being available for longer than 11 minutes. The
locations of calls would be mapped by the software. The
system would then use this map data and the location and
status details provided by the AVLS to find and dispatch the
available ambulance closest to the incident’s location. To top
it off, this system would be implemented not incrementally,
but all at once [2].



MSOE - SE-3811 - FORMAL METHODS, DR. WELCH, SPRING 2006

1II. THE FAILURE
A. What Happened

After a whole slew of issues, including a project cancellation
and re-design, a software system got developed and was
deployed the morning of October 26, 1992 [2]. Just a few
hours later, however, problems began to arise. The AVLS was
unable to keep track of the ambulances and their statuses in
the system. It began sending multiple units to some locations
and no units to other locations. The efficiency with which
it assigned vehicles to call locations was substandard. The
system began to generate such a great quantity of exception
messages on the dispatchers’ terminals that calls got lost. The
problem was compounded when people called back additional
times because the ambulances they were expecting did not
arrive. As more and more incidents were entered into the
system, it became increasingly clogged. The next day, the LAS
switched back to a part-manual system, and shut down the
computer system completely when it quit working altogether
eight days later [1].

Because of the large area serviced by the LAS, many people
were directly affected by the computer system failure. There
were as many as 46 deaths that would have been avoided had
the requested ambulance arrived on time. One heart attack
patient waited six hours for an ambulance before her son took
her to the hospital. Four hours after that, the LAS called to
see if the ambulance was still needed. Another woman called
the LAS every 30 minutes for almost three hours before an
ambulance arrived. It was too late, as her husband had already
died. One ambulance crew arrived only to find that the patient
had not only died, but his body had been taken away by a
mortician [2]

B. Immediate Causes

At the time the system went live, there were 81 known
issues with the software and no load-tests had been run. No
provisions for a backup system had been made. While the
gap of 10 months between the time dispatchers were first
trained to use the software and when it was deployed played
its role in the disaster, the software had three primary flaws
that immediately caused the failure:

1) Imperfect Data : The software system did not function
well when given invalid or incomplete data regarding the
positions and statuses of ambulances [2].

2) Interface Issues : The deployed system had a wide
variety of quirks in different parts of the user interface. For
example, parts of the MDT terminal screens had black spots,
thus preventing ambulance operators from getting all infor-
mation needed. When ambulance crews attempted to remedy
mistakes after pushing incorrect wrong buttons, the system did
not accept the fix. Again, the software failed to compensate for
the error conditions that occur in normal, day-to-day operation
[2].

3) Memory Leak : The root cause of the main breakdown
of the system, however, was a memory leak in a small
portion of code. This defect retained memory that held incident
information on the file server even after it was no longer

needed. As with any memory leak, after enough time, the
memory filled up and caused the system to fail [2].

IV. DEEPER CAUSES

IEEE member and risk management expert Robert Charette
suggests, “Bad decisions by project managers are probably the
single greatest cause of software failure today” [3]. While the
software controlling the LAS’s CAD system had some key
flaws, without which the system may not have failed to the
extent it did, the events surrounding the failure, the state of the
LAS as an organizational entity, and the process with which
the LAS approached the development of the CAD played just
as large, if not a larger role in the system’s failure.

Getting the LAS CAD system to the point of deployment
was challenging and opened the doors for failure to creep in at
several points. The original design of the LAS’s CAD system
was first proposed in 1987. It was modified in 1989 and then,
due to gross overspending by about 300%, the project was
canceled in 1990. However, the national mandate to reduce
emergency response times pushed the LAS to look into a
computerized system once again. [2].

A. Hardware Reuse

When the project was re-opened, those LAS individuals in
charge of it approached it with the primary goal to save as
much time and money as possible. While this is a reasonable
aim of any project, it held too much weight in the LAS’s CAD
project. As part of the attempt to save money, the LAS decided
to reuse some of the hardware that had already been purchased
when working on the failed project instead of purchasing
hardware that was either more up-to-date or more suitable for
the new system [2].

B. Vendor Selection

The two people who were primarily in charge of choosing
a software vendor for creating the system were “a manager
expecting to become redundant and a contractor who was
a temporary addition to the organisation.” These individuals’
roles and their lack of stake in the project draw in to question
their ability to select the best company for the job. Further,
the selection committee weighed a bid’s price as the most
important factor in selecting a vendor. All companies that
submitted bids greater than £1.5 million were immediately
thrown out. This is an unreasonably low price, especially
considering the fact that even after £7.5 million had been
poured into the previous attempt at a CAD system, the project
had failed [2].

Selection of a developing organization was further con-
strained by the requirement that the project be completed in 11
months. Once again, any bids not meeting this hard constraint
were not considered. Several companies proposed modified
deployment schedules in which some functionality would be
delivered after the 11 month deadline and the rest a year later.
These, too, were thrown out. [2].

The LAS accepted a bid of just under £1 million that was
submitted by a conglomeration of companies. The software



MSOE - SE-3811 - FORMAL METHODS, DR. WELCH, SPRING 2006

portion of the system was “offered as a throw-in in a hardware
deal” for a meager £35 thousand and was completed by a
company called System Options. The fact that the majority
of the cost for this package which relied heavily on software
went instead toward hardware should have raised a flag that
something was askew [2].

Further, System Options was declared the project lead.
Though it had developed many smaller software packages,
System Options had never worked on such a large project
and had absolutely no past experience with “real-time, safety-
critical, command and control systems.” Its inexperience de-
veloping such software led the contractor selection committee
to raise concerns over the company’s ability to perform the task
at hand. However, even though these concerns were further
substantiated by an audit of the selection process, the LAS
hired the company [2].

C. Design, Requirements, and Specifications

The process through which requirements were gathered and
specifications and designs were written had several major
flaws. First, it seems that a LAS team - not a software devel-
opment team - went through this process without attempting to
consult ambulance operators, dispatchers, and other key users
of the system. A basic understanding of the software require-
ments process suggests that leaving out key stakeholders is
detrimental to the project and will result in an incomplete
set of requirements. Further, the requirements document was
“highly detailed and extremely prescriptive,” very much a
direct contradiction of the requirements process’ focus on the
what as opposed to the how. Once the companies completing
the project were selected, they were required to provide a final
system design specification. The LAS incorrectly assumed that
if the contractor could do this, they understood the system they
had to create. However, there was no signoff on this design
specification and it was updated after development began [2].

D. Flawed Software Process

Several other parts of the software process played a large
role in the eventual failure of the deployed product. No
quality assurance was performed, configuration management
was absent, agreed-upon changes were not tracked, and test
plans were not written, just to name a few. At one point in the
CAD system’s development, the LAS considered hiring one
of the other bidders to perform some quality assurance tasks.
Because this was seen as the job of the developing organi-
zation, this idea was disregarded [2]. Though any developing
organization should be able to ensure its products’ quality,
testing is impossible when getting the project coded in the
allotted 11 months is an already an unachievable goal.

V. RESPONSIBILITY

While it is true that the CAD system’s software errors
demonstrate “carelessness and lack of quality assurance of
program code changes,” had the LAS paid more attention to
selection process of the developing organization and imposed
more reasonable and realistic expectations, the CAD system

likely would not have failed as it did [5]. Additional time to
develop the software would have allowed the developers to
more meticulously follow the software process and provide
an opportunity for adequate testing of the entire system. Had
the LAS selected a different company with more experience
with real-time applications to develop the CAD system, the
project could have benefited from a firmer foundation for the
software’s conception.

Although the LAS erred in its decision to choose System
Options to develop the CAD software, System Options is by no
means absolved of blame. Consider a surgeon who specializes
in orthopedic surgery but is completely inexperienced in heart
surgery. He volunteers to perform an important and difficult
heart surgery in one-eighth the time it would take an expe-
rienced heart surgeon to do it. Although this doctor believes
he is capable of performing the surgery, his inexperience and
stringent time restraints make this a high risk surgery better
suited for a surgeon trained in the specific task. Similarly,
System Options’ lack of background in real time systems and
insufficient allotment of time to complete the project should
have provided sufficient reason for company decision makers
to refrain from bidding on the project.

One might argue that System Options is not responsible for
the small window of development time, as it was a restriction
imposed by the LAS. However, had no company suggested that
successful delivery was possible in the time frame the LAS
required, the LAS would have realized that it was unreasonable
and either expanded the time frame or abandoned the project.
System Options’ acceptance of the bid implied that it was,
indeed, possible to create a successful CAD solution in the
time frame given.

While the LAS pushed for expedient delivery, System
Options, as “professionals” in the area of software system
development, had an obligation to protect the public. Knowing
that the system was incomplete, untested and buggy, System
Options took an enormous risk in deploying it. It failed to
do its duty to sufficiently evaluate this risk and refuse to
release, just as those involved with the Challenger space shuttle
incident minimized a known risk and thus failed to keep the
spacecraft from launching. Even if System Options had a lot
riding on the timely release of the software, the loss the failure
caused was far greater than any monetary investment that could
ever be made.

VI. CONCLUSION

Though a small software error often is the straw that breaks
the camel’s back, the responsibility for the LAS’s CAD system
failure does not lie solely on the single developer who made
the error or even the developing organization to which he
belonged. Rather, the attitudes of key LAS members toward
the project and the unreasonable restraints they placed on the
project allowed the failure to occur.

REFERENCES

[1] A. Finkelstein, J. Dowell, “A comedy of errors: the London Ambulance
Service case study,” iwssd, p. 2, 8th International Workshop on Software
Specification and Design (IWSSD’96), 1996.



MSOE - SE-3811 - FORMAL METHODS, DR. WELCH, SPRING 2006

[2] D. Dalcher, “Disaster in London: The LAS Case study,” ecbs, p. 41, IEEE
Conference and Workshop on Engineering of Computer-Based Systems,
1999.

[3] R.N. Charette, “Why Software Fails,” IEEE Spectrum, Vol. 42, Issue 9,
Sept. 2005, p. 42-49.

[4] “London Ambulance Service,” Wikipedia, Mar. 20, 2006, Available
http://en.wikipedia.org/wiki/London_Ambulance_Service, Apr. 10, 2006.

[5] D. Page, P. Williams, and D. Boyd, Report of the Inquiry into the London
Ambulance Service, Communications Directorate, South West Thames
Regional Health Authority, London, Feb. 1993.



